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Summary

Background Many cancer types display sex and age disparity in incidence and out-
come. The mutational load of tumours, including melanoma, varies according to
sex and age. However, there are no tools to explore systematically whether clini-
cal variables such as age and sex determine the genomic landscape of cancer.
Objectives To establish a mathematical approach using melanoma mutational data
to analyse how sex and age shape the tumour genome.
Methods We model how age-related (clock-like) somatic mutations that arise dur-
ing cell division, and extrinsic (environmental ultraviolet radiation) mutations
accumulate in cancer genomes.
Results Melanoma is driven primarily by cell-intrinsic age-related mutations and
extrinsic ultraviolet radiation-induced mutations, and we show that these mutation
types differ in magnitude and chronology and by sex in the distinct molecular mel-
anoma subtypes. Our model confirms that age and sex are determinants of cellular
mutation rate, shaping the final mutation composition. We show mathematically
for the first time how, similarly to noncancer tissues, melanoma genomes reflect a
decline in cell division during ageing. We find that clock-like mutations strongly
correlate with the acquisition of ultraviolet-induced mutations, but critically, men
present a higher number and rate of cell-division-linked mutations.
Conclusions These data indicate that the contribution of environmental damage to
melanoma likely extends beyond genetic damage to affect cell division. Sex and
age determine the final mutational composition of melanoma.

What is already known about this topic?

• Cancer incidence and mortality are influenced by sex and age.

• Melanoma is more frequent in men, and the incidence and mortality rise with

increasing age.

• The main mutations driving melanoma are linked predominantly to ultraviolet

(UV) radiation damage and to errors accumulated in the DNA after each cell divi-

sion, which are unrepaired.

• These clock-like mutations linked to cell division accumulate steadily over time in

both healthy tissue and cancers.

What does this study add?

• Clock and UV mutations are tightly correlated and arise in melanoma as a function

of age and sex.

• The molecular subtypes have a distinct pattern and rate of UV and clock mutations,

and clock mutations depend on the amount of UV damage.
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• The rate of clock mutations decreases as individuals age, reflecting a decrease in tis-

sue proliferation during ageing.

• Men have more clock mutations, which reflect a distinct proliferation rate.

What is the translational message?

• This study indicates that age and sex shape the rate of mutations observed in mela-

noma.

• The burden of mutation affects response to novel immunotherapies, so this work

supports the rationale to stratify patients by their mutational landscape, age and sex

to discriminate possible responders most easily.

• These data can better inform public health prevention campaigns.

Sex and age disparity in cancer incidence and outcomes are

well described, and studies have revealed age1,2 and sex differ-

ences3 in genomics.4,5 Somatic mutations arise in cells due to

damage following cell-intrinsic processes, as well as due to

external environmental damage on the DNA. Recent work

describes computational methods to discern the multiple, dis-

tinct signatures of DNA damage imprinted on DNA depending

on the insult,6 but to date there are no available models to

study the relationship between the distinct damaging processes.

Cutaneous melanoma exemplifies a cancer type primarily

presenting cell-intrinsic (cell division) and environmental (ul-

traviolet radiation, UVR) damaging processes,7 as well as pre-

senting an age and sex bias. Male patients and the aged

population have a higher incidence and rate of death, so we

studied whether the genomic imprints of the major contribu-

tors to total autosomal tumour mutation burden (TMB) in

melanoma are possible sources for the disparity.

Melanoma presents a broad range of clinical subtypes, cate-

gorized by age of onset, history and pattern of UVR expo-

sure.8,9 At one end of the spectrum, we identify elderly

patients with melanomas arising at anatomical sites that have

been chronically exposed to UVR, who have a high TMB. In

contrast, melanoma in younger patients arises decades after

sunburn, over skin that is intermittently exposed to UVR, with

a lower TMB.9–11

The mutually exclusive oncogenic drivers V600BRAF and

NRAS underpin the majority of cutaneous melanomas.12 Loss-

of-function mutations in the tumour suppressor neurofi-

bromin (NF)1 drive an additional subset of cases, and a fur-

ther subgroup is defined by the absence of V600BRAF, NRAS

and NF1 mutations (triple wildtype, W3).13 These genetically

distinct categories overlap to some extent in their clinical char-

acteristics, with V600BRAF being more prevalent in younger

patients.12

Here we examine the relationship between mutational pro-

cesses and their contribution to the melanoma somatic muta-

tion load, and their variation over time and across sexes. We

provide a mathematical framework to model how the specific

damage patterns in DNA arise over time and across the sexes.

Analysing the strong bias in the mutational landscape could

point to key biological differences in how tumours develop

and evolve during ageing and across sexes.

Materials and methods

Mutation data

The primary data are the somatic mutation calls from The

Cancer Genome Atlas (TCGA) Mutation Annotation Format of

the whole-exome sequences of the Skin Cutaneous Melanoma

(SKCM) cohort.10 The sequencing data were obtained from

the TCGA in accordance with ethical guidelines.

We classified samples by their mutations in BRAF with V600

mutations, NRAS, NF1 or none of these genes. Samples with
V600BRAF or NRAS and an additional NF1 mutation were classi-

fied as either V600BRAF or NRAS. We inferred the mutational

processes by categorizing the single-nucleotide substitutions in

the trinucleotide context and used mathematical models to

infer their contribution to the mutational landscape across bio-

logical sex and age.

We estimated the exposure to Signatures 1 and 7 using the

R package deconstructSigs14 and validated the approach by

rederiving the mutation signatures using a hierarchical Dirich-

let process (R package hdp; R Foundation for Statistical Com-

puting, Vienna, Austria).

Mathematical models

The number of mutations present at any given age can be

described using a Poisson process15 with time-varying mean

k tð Þ.15 We use an exponential model k tð Þ ¼ N0eat for the

mean. To estimate the effect of the different subtypes on the

ratio of mutations by age we modelled the accumulation of

mutations using a homogeneous Poisson process with age as

an offset:

log E½NðtÞjX1; . . .; Xk� ¼ atþ
X

i

biXi;

where the Xi values are the covariates (sex, site and subtype in

our case). As the distribution of the mutation count data was
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found to be overdispersed (R package aes), we estimated a

negative binomial regression instead of a Poisson regression.

By fitting a Poisson mixture model, we found similar ratios

between the coefficients associated with the different subtypes.

We estimated the change in accumulation rate with age with

the exponential model for mutation accumulation:

NðtÞ ¼ N0e
at; the derivative of fðtÞ ¼ eat=t by t is

df

dt

¼ eat

t
ða� 1

t
Þ:

Using the exponential accumulation model, N tð Þ ¼ EN0eat,

where E (for extrinsic mutations) denotes the number of Sig-

nature 7 mutations (Poisson regression with the logarithm of

Signature 7 as offset), we estimated the ratio N tð Þ=E of intrin-

sic, clock-like mutations when factoring out the extrinsic, Sig-

nature 7 mutations.

Additional methods are described in Appendix S1 (see Sup-

porting Information), including mutation data, mutation sig-

natures, the mathematical model of mutation accumulation,

change in accumulation rate with age and cell-cycle gene

expression analysis.

Results

Clock-like and ultraviolet radiation-driven mutations

accumulate with age at distinct rates in the molecular

subtypes of melanoma

We catalogued the base substitutions in 396 whole-exome

cutaneous melanoma samples from TCGA (TCGA-SKCM)12

according to 96 categories defined by the base substitution

and the preceding and following bases.7 In total, 172 had a
V600BRAF mutation, 96 NRAS and 44 NF1, and 84 samples were

non-BRAF, non-NRAS and non-NF1 (W3; Table S1; see Sup-

porting Information).

We inferred the mutational signatures that account for the

somatic mutations from the TCGA data. We extracted the

DNA mutational signature linked to UVR (Signature 7, COS-

MIC database), which is present to varying degrees across

melanomas. Next, we identified the intrinsic, age-related sig-

nature observed in normal cells and cancers with high cell

turnover, which corresponds to spontaneous deamination of

methylated cytosine residues into thymine at CpG sites that

remain unrepaired due to rapid DNA replication (Signature 1,

COSMIC database).7,16,17 This clock-like mutational process

allows estimation of the number of divisions a cell has under-

gone since its inception. Previous studies have modelled the

potential disruption to the linear acquisition of somatic muta-

tions during ageing that occurs when the neoplastic phase

alters the rate of mutation acquisition, and found across multi-

ple cancer types that clock-driven mutations are linked to

intrinsic cellular division despite neoplastic and oncogenic dri-

ver ontogenesis.16,18

We confirmed a positive correlation between the median

number of Signature 1 mutations per year and age for all sam-

ples (Spearman q = 0�41, P < 0�001; Figure 1a), indicating

that these mutations accumulate with age. NRAS, NF1 and W3

melanomas presented an increase in the mean Signature 1

mutations with age, but this relationship was less significant

in NF1 and W3 melanomas, likely due to the lower sample

size (NRAS Spearman q = 0�35, P < 0�01; Figure 1b). Strik-

ingly, there was no significant rank correlation between Signa-

ture 1 and age in BRAF samples (Spearman q = 0�03, P =
0�41). To examine the difference in the rates of Signature 1

mutation accumulation between BRAF, NRAS, NF1 and W3

melanomas, we determined the ratio between the number of

Signature 1 mutations and age, and found significant differ-

ences in the ratios of BRAF and W3 to NF1 melanomas (pair-

wise Wilcoxon rank sum test with Bonferroni correction, P <
0�0027; Figure 1c), but these were less pronounced for BRAF

and NRAS samples.

Next we examined the relationship between Signature 1

mutations and melanoma cell proliferation by investigating

the gene expression of cell-cycle genes.19 We found a weak

but significant correlation between Signature 1 and both cell-

cycle checkpoint G1/S (P = 0�03, R = 0�107) and G2/M (P =
0�016, R = 0�121) expression genes. Furthermore, when

dividing the melanomas by high vs. low Signature 1 muta-

tions based on the median, we observed a significantly higher

expression of both G1/S and G2/M genes in the high Signa-

ture 1 group, which was more significant for the G2/M-

expressed genes. Finally, in a multiple regression with the

other factors in the dataset (age, sex and molecular subtype),

Signature 1 was the only factor associated with G1/S and G2/

M gene expression.

We next examined the contribution of Signature 7 muta-

tions and found a progressive increase as patients aged, in

accordance with progressive accumulation of UVR damage

during the course of life (Spearman q = 0�37, P < 0�006; Fig-
ure 1d). However, the rate of mutations varied depending on

the molecular subtype, with no significant correlation found

Figure 1 The molecular subtypes of melanoma present distinct ratios of clock-like and ultraviolet radiation (UVR) mutations per unit of time. (a)

Correlation analysis between age and somatic mutations due to clock-like Signature 1 mutations in cutaneous melanomas. The dots represent the

median number of mutations for each age. (b) Correlation analysis between age and clock-like Signature 1 mutations in the molecular subtypes of

cutaneous melanomas. Dots represent the median number of mutations for each age. (c) Ratio of the number of Signature 1 mutations per year

across the molecular subtypes of cutaneous melanoma. (d) Correlation analysis between age and somatic mutations due to UVR Signature 7

mutations in cutaneous melanomas. The dots represent the median number of mutations for each age. (e) Correlation analysis between age and

UVR Signature 7 mutations in the molecular subtypes of cutaneous melanomas. Dots represent the median number of mutations for each age. (f)

Ratio of the number of Signature 7 mutations per year across the molecular subtypes of cutaneous melanoma. W3, triple wildtype.
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in BRAF melanomas between Signature 7 and increasing age

(Spearman q = �0�15, P = 0�87; Figure 1e), and NRAS sam-

ples showing a steady increase of Signature 7 with age (Spear-

man q = 0�37, P < 0�006). Similarly to Signature 1, there was

a significant difference in the ratio of Signature 7 mutations to

age across the subtypes (P < 0�03, Mann–Whitney U-test with

Bonferroni correction; Figure 1f).

We investigated the association between Signature 7 (global

UV damage) and the novel probabilistic UV damage signatures

that were more recently defined.13 We calculated the likely

UV-associated mutational signatures with the version 3 signa-

tures, using deconstructSigs for consistency. The correlation

between the sum of the four new signatures (SBS7a, SBS7b,

SBS7c, SBS7d) and the version 2 Signature 7 is > 0�95 (P <
0�001). The vast majority of mutations contributing to these

signatures are SBS7a (median proportion of total Signature 7

per sample = 0�474) and SBS7b (median proportion per sam-

ple = 0�495). As both signature mutagens encompass the

canonical CC?TT and the atypical frequency of C?T substi-

tutions at a dipyrimidine site that is attributable to UV muta-

genesis, we retained the original, comprehensive Signature 7

to strengthen our power to detect associations.

Ageing affects the dynamics of the mutational landscape

Common models of cancer have assumed that mutations accu-

mulate at a linear rate over time.20 Genetic changes accumu-

late from early life,16,18 and a decline in replicative function

with age is visible in many tissues.21 We used our cohorts to

test the relationship between ageing and clock-like mutation

rate in melanoma, and found that the ratio of mutations per

year decreases with age (Spearman q = �0�34, P < 0�005;
Figure 2b). Specifically, the decline in mutations per year is

pronounced in BRAF (Spearman q = �0�44, P < 0�001) but

not statistically significant in NRAS or W3 melanomas. We did

not include NF1 samples in the analysis, as this subtype is

almost exclusive to the elderly.

To analyse the differences in ageing dynamics, we con-

sidered the mean number of mutations at each age, mod-

elled by a Poisson distribution with age-dependent rate, and

found that the ratio of mutations by age decreases in older

age groups (Figure 2a). We used an overdispersed Poisson

(negative binomial) regression to estimate the parameters of

the exponential model for each subtype BRAF, NRAS and

W3, and found that overall, the amount of Signature 1

mutations increases by a multiplicative factor of ea = 1�012
per year (Figure 2c). In contrast, the increase factor is only

1�005 for BRAF, 1�016 for NRAS and 1�024 for W3 mela-

nomas (Figure 2d; and Tables S2 and S3; see Supporting

Information). Thus, while the ratio of Signature 1 damage

acquisition to age in BRAF and NRAS melanomas decreases

during ageing, likely reflecting a deceleration of the cell

proliferation rate during maturity, the ratio per year of

clock mutations in W3 melanomas slightly increases during

the human lifespan, reflecting a distinct behaviour (Fig-

ure 2e).

The rate of clock-like mutations is linked to ultraviolet

radiation damage

Previous experiments showed that acute UVR drives melano-

cyte proliferation,22 but the long-lasting effects of UVR on cell

division have not been explored. We investigated the propor-

tion of Signature 1 and Signature 7 across the melanoma sub-

types and found that UVR underpins approximately 75% of all

mutations in BRAF, NRAS and NF1 samples, while only half

of the mutations in W3 samples are accounted for by UVR

(Figure 3a). Furthermore, we found a greater proportion of

the ageing signature that is uncoupled from cellular division

(Signature 5, characterized by T:A?C:G transitions) contribut-

ing to the overall mutational burden of W3 melanomas. The

underlying biological process driving Signature 5 mutations is

unknown, but it is linked to ageing independently of cellular

division.18

We then used Signature 1 and 7 to investigate the relation-

ship between UVR damage and the cell cycle, and show that

cell division rate, predicted from Signature 1, tightly correlates

with the total UVR-induced mutations in melanoma (Spear-

man q = 0�82, P < 0�001; Figure 3b). The correlation

between Signatures 1 and 7 remains significant across all of

the subtypes (BRAF: Spearman q = 0�70, P < 0�001; NRAS: q
= 0�72, P < 0�001; NF1: q = 0�8, P < 0�001; W3: q = 0�64, P
< 0�001; Figure 3c). There is a marked difference in the

increase of Signature 1 that is dependent on Signature 7 in

both BRAF and NRAS melanomas (BRAF: robust regression

with slope 0�033, P < 0�001; NRAS: robust regression with

slope 0�046, P < 0�001). These data suggest that UVR

increases the total mutation burden by damaging DNA

directly, but it may also modify the TMB by affecting the

dynamics of cell division. Importantly, these data show that

cell proliferation is coupled to UVR, not age, in BRAF melano-

mas.

Ageing-associated mutations accumulate at different

rates in men and women

Melanomas from men present an overall higher number of

missense mutations than in women, adjusted for age and rele-

vant clinical covariates.3 We investigated the relationship

between Signature 1 and sex. Critically, we observed that men

present a higher number of Signature 1 mutations per age (P

< 0�01, Mann–Whitney U-test with Bonferroni correction;

median male-to-female ratio 1�24; Figure 4a). The difference

is visible in the BRAF and NRAS subtypes (Figure 4b),

although it is less statistically significant (P = 0�1 for BRAF, P

= 0�6 for NRAS; Mann–Whitney U-test with Bonferroni cor-

rection). For men, we found a significant rank correlation

with age (Spearman q = 0�45, P < 0�001), but we did not

find this for female samples (Spearman q = 0�12, P = 0�35;
Figure 4a). Using multivariate negative binomial regression

we found that sex affects the rate of mutation accumulation (P

< 0�001) and estimated the factor by which mutations

increase per year in male and female samples (Figure 4c, d;
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Figure 2 Ageing affects the intrinsic mutation rate of the molecular subtypes. (a) Distribution curves displaying Signature 1 mutation frequency

across age ranges. (b) Correlation analysis between clock-like Signature 1 mutations per year and age in cutaneous melanomas. The dots represent

the median number of mutations for each age. (c) Exponential model for the accumulation of Signature 1 mutations in all melanomas. This curve

models the Poisson mean distribution of mutations at each age, with age-dependent rate. (d) Exponential model for the accumulation of Signature

1 mutations in the molecular subtypes of cutaneous melanoma. This curve models the Poisson mean distribution of mutations at each age, with

age-dependent rate. (e) Change in Signature 1 mutations per year with age across the BRAF, NRAS and triple-wildtype (W3) subtypes.
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and Table S3; see Supporting Information). We observed that

only male samples presented a factor of mutation increase per

year greater than one. The results remain robust when restrict-

ing the analysis to the molecular subtypes (except for NF1

due to the sample size), showing an increase in Signature 1

mutations with age in male samples (Table S3).

We next investigated whether the difference in the rate of

mutation accumulation persists when accounting for the effect

of UVR-driven Signature 7 mutations. Assuming that the num-

ber of Signature 1 mutations is proportional to the number of

Signature 7 (Figure 3b, c), we investigated the ratios of Signa-

ture 1 to Signature 7 across melanomas, adjusted for the effect

of Signature 7 on cell division, and found that there is little to

no increase in Signature 1 mutations per year in either sex.

Moreover, the multiplicative rate of increase of the ratio of

Signature 1 to Signature 7 mutations per year turns out to be

slightly smaller (by 0�01) in men (Table S4; see Supporting

Information) in all samples, across BRAF and NF1 subtypes,

and is not detected in NRAS and W3. These data imply that

the rate at which clock-like mutations accumulate per year

depends on UVR, and this dependence is stronger in men than

in women. Thus, men and women exposed to equal doses of

UV adjust their cell cycles differently, with men increasing the

rate of cell division.

In summary, our results indicate that the mutation rate due

to cell division is determined by UVR exposure, and men are
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between somatic mutations due to extrinsic, UVR-driven Signature 7 mutations in cutaneous melanomas and intrinsic, clock-like Signature 1
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more susceptible to UVR-induced cell proliferation. In con-

trast, women accumulate fewer Signature 1 mutations, at a

slower rate, despite UVR exposure (Figure 5).

Discussion

Sex and age differences have been observed in cancers.3,23 We

provide a mathematical framework to analyse the relationship

between different damaging processes shaping the mutational

landscape of cancer, and how mutations can reveal the effect

of age and sex on carcinogenesis. We use the predominant

mutational processes of the exomes of cutaneous melanomas,

which are imprinted primarily by the clock-like changes due

to cell division and UVR-driven mutations. Both processes

increase during ageing and are tightly correlated, which poses

the intriguing possibility that UVR not only drives melanoma

by damaging DNA directly, but also may influence the intrin-

sic processes of cell division and damage repair.

We observed that the correlation of mutations to age is

absent in BRAF melanomas, in sharp contrast to NRAS and

NF1 melanomas, where there is a gradual increase in UVR

and cell division mutations with patient age. Although our
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Figure 4 Melanomas in men accumulate more Signature 1 mutations. (a) Difference in Signature 1 mutations per age between male and female

samples. (b) Difference in Signature 1 mutations per age between male and female samples by subtype (BRAF and NRAS). (c) Exponential model

for accumulation of Signature 1 mutations by sex. This curve models the Poisson mean distribution of mutations at each age, with the age-

dependent rate. (d) Change of Signature 1 mutations per age over time, according to sex.
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correlation studies do not imply causation, the punctuated rate

of mutation accumulation we observe in BRAF melanomas

could be driven by episodic sunburn. Our model supports

clinical studies showing that BRAF melanomas are more preva-

lent over intermittently sun-exposed skin with little sun dam-

age in the dermis of younger patients.24–26 Additionally, our

data corroborate mouse studies demonstrating a link between

few episodic UV exposures and BRAF melanoma.22,27 How-

ever, in addition to the UV-induced DNA mutation burden,

UV also contributes to tumorigenesis by triggering inflamma-

tion,28 and this contribution of UV is not captured by our

model.

Recent studies examining the correlation between lifetime

risk of cancer and cell division have shown that tissues with

higher cell turnover present an increased cancer incidence,29,30

suggesting that more proliferative tissues require less environ-

mental damage to drive tumorigenesis. Our results challenge

this assumption and propose that extrinsic processes such as

UVR can modulate the contribution of cell division to muta-

tion burden.

We show that the decline in cell division during ageing in

healthy tissues and stem cells21,31 is discernible in the geno-

mic imprint of melanoma cells. Moreover, the rate of prolifer-

ative decline is not uniform across all subtypes. Our

framework could test whether the decline in cell division with

age varies according to the tissue of origin, and whether

decline in cell division mirrors a decrease in cancer incidence

observed in the superaged population.

Finally, we reveal an increase in cell-division-linked muta-

tions in men, which could be due to an increase in the inher-

ent proliferation rate of male melanocytes, or to a decrease in

the mutational repair of UVR mutations. A recent pan-cancer

analysis has shown sex biases in mutational load, tumour evo-

lution and mutational processes, and also at the gene

level.4,5,32 Our study suggests that sex differences in mela-

noma cannot be explained by lifestyle or age alone, and likely

reflect sex-specific biology. Intriguingly, Signature 1 is

increased in women in an age-adjusted, pan-cancer analysis,32

while our results reveal a contrary sex bias in Signature 1 in

melanoma.

One limitation of applying mutational signatures to infer

disease evolution is that different mutational stresses occur

at different timepoints of disease progression. In mela-

noma, UV damage is acquired when melanoma is located

in the skin. In contrast, Signature 1 summarizes cell divi-

sions throughout the lifespan of the cell, from premalig-

nancy to advanced stages. However, recent work found

most melanoma mutations to be primarily early, truncal

and monoclonal.33

Our study provides new tools to examine the rate of muta-

tion accumulation in cancer, and to study how sex and age

contribute to tumour development. Tumour burden, age and

sex are known to influence the response to immunothera-

pies,34,35 and future studies should address how these data

can be leveraged to predict response to therapy and design

strategies to improve survival. Although it is limited to a sin-

gle melanoma cohort, this work supports the rationale for

using the mutational processes, together with age and sex, to

stratify patients for novel immunotherapy trials, as well as to

inform public health prevention and diagnostic campaigns.

References

1 Balch CM, Soong S, Gershenwald JE et al. Age as a prognostic fac-
tor in patients with localized melanoma and regional metastases.

Ann Surg Oncol 2013; 20:3961–8.
2 Cavanaugh-Hussey MW, Mu EW, Kang S et al. Older age is associ-

ated with a higher incidence of melanoma death but a lower inci-
dence of sentinel lymph node metastasis in the SEER databases

(2003–2011). Ann Surg Oncol 2015; 22:2120–6.
3 Gupta S, Artomov M, Goggins W et al. Gender disparity and muta-

tion burden in metastatic melanoma. J Natl Cancer Inst 2015; 107:
djv221.

(a) (b)

Figure 5 Summary of findings. (a) Ultraviolet (UV) radiation somatic mutations are strongly associated with the rate of cell-division mutations,

suggesting that an extrinsic mutational process (UV) influences the intrinsic mutational process due to cell division. The rate of cell division in

male melanoma is more strongly correlated to UV damage than in female melanoma. (b) Cancer cells bear the genomic imprint of decreasing rate

of cell division during ageing. TMB, tumour mutation burden.

© 2020 The Authors. British Journal of Dermatology
published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists

British Journal of Dermatology (2021) 184, pp328–337

336 Sex and age determine melanoma mutations, Lotz et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bjd/article/184/2/328/6599737 by guest on 20 N

ovem
ber 2024



4 Li CH, Haider S, Shiah YJ et al. Sex differences in cancer driver
genes and biomarkers. Cancer Res 2018; 78:5527–37.

5 Yuan Y, Liu L, Chen H et al. Comprehensive characterization of
molecular differences in cancer between male and female patients.

Cancer Cell 2016; 29:711–22.
6 Kucab JE, Zou X, Morganella S et al. A compendium of mutational

signatures of environmental agents. Cell 2019; 177:821–36.
7 Alexandrov LB, Nik-Zainal S, Wedge DC et al. Signatures of muta-

tional processes in human cancer. Nature 2013; 500:415–21.
8 Schadendorf D, van Akkooi ACJ, Berking C et al. Melanoma. Lancet

2018; 392:971–84.
9 Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev

Cancer 2016; 16:345–58.
10 Cancer Genome Atlas Network. Genomic classification of cuta-

neous melanoma. Cell 2015; 161:1681–96.
11 Whiteman DC, Watt P, Purdie DM et al. Melanocytic nevi, solar

keratoses, and divergent pathways to cutaneous melanoma. J Natl

Cancer Inst 2003; 95:806–12.
12 Akbani R, Akdemir KC, Aksoy BA et al. Genomic classification of

cutaneous melanoma. Cell 2015; 161:1681–96.
13 Hayward NK, Wilmott JS, Waddell N et al. Whole-genome

landscapes of major melanoma subtypes. Nature 2017; 545:
175–80.

14 Rosenthal R, Mcgranahan N, Herrero J et al. deconstructSigs: delin-
eating mutational processes in single tumors distinguishes DNA

repair deficiencies and patterns of carcinoma evolution. Genome Biol
2016; 17:31.

15 Podolsky MD, Barchuk AA, Kuznetcov VI et al. Evaluation of
machine learning algorithm utilization for lung cancer classifica-

tion based on gene expression levels. Asian Pacific J Cancer Prev 2016;
17:835–8.

16 Alexandrov LB, Jones PH, Wedge DC et al. Clock-like mutational
processes in human somatic cells. Nat Genet 2015; 47:1402–7.

17 Nik-Zainal S, Van Loo P, Wedge DC et al. The life history of 21
breast cancers. Cell 2012; 149:994–1007.

18 Blokzijl F, De Ligt J, Jager M et al. Tissue-specific mutation accu-
mulation in human adult stem cells during life. Nature 2016;

538:260–4.
19 Tirosh I, Izar B, Prakadan SM et al. Dissecting the multicellular

ecosystem of metastatic melanoma by single-cell RNA-seq. Science
2016; 352:189–96.

20 Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature
2009; 458:719–24.

21 Wang Y, Hekimi S. Stem cells and healthy aging. Science 2015;

350:1199–204.
22 Viros A, Sanchez-Laorden B, Pedersen M et al. Ultraviolet radiation

accelerates BRAF-driven melanomagenesis by targeting TP53. Nature
2014; 511:478–82.

23 Balch CM, Soong SJ, Gershenwald JE et al. Prognostic factors analy-
sis of 17,600 melanoma patients: validation of the American Joint

Committee on Cancer melanoma staging system. J Clin Oncol 2001;
19:3622–34.

24 Curtin JA, Fridlyand J, Kageshita T et al. Distinct sets of genetic
alterations in melanoma. N Engl J Med 2005; 353:2135–47.

25 Viros A, Fridlyand J, Bauer J et al. Improving melanoma classifica-
tion by integrating genetic and morphologic features. PLOS Med

2008; 5:e120.

26 Landi MT, Bauer J, Pfeiffer RM et al. MC1R germline variants con-
fer risk for BRAF-mutant melanoma. Science 2006; 313:521–2.

27 Trucco LD, Mundra PA, Hogan K et al. Ultraviolet radiation-
induced DNA damage is prognostic for outcome in melanoma. Nat

Med 2019; 25:221–4.
28 Zaidi MR, Davis S, Noonan FP et al. Interferon-c links ultraviolet

radiation to melanomagenesis in mice. Nature 2011; 469:548–53.
29 Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk

among tissues can be explained by the number of stem cell divi-
sions. Science 2016; 347:78–81.

30 Wu S, Powers S, Zhu W, Hannun YA. Substantial contribution of

extrinsic risk factors to cancer development. Nature 2016; 529:43–7.
31 Tomasetti C, Poling J, Roberts NJ et al. Cell division rates decrease

with age, providing a potential explanation for the age-dependent
deceleration in cancer incidence. Proc Natl Acad Sci U S A 2019;

116:20482–8.
32 Li CH, Prokopec SD, Sun RX et al. Sex differences in oncogenic

mutational processes. bioRxiv 528968. Available at: http://bior
xiv.org/content/early/2019/01/28/528968.abstract (last accessed

21 April 2020).
33 Birkeland E, Zhang S, Poduval D et al. Patterns of genomic evolu-

tion in advanced melanoma. Nat Commun 2018; 9:2665.
34 Kugel CH, Douglass SM, Webster MR et al. Age correlates with

response to anti-PD1, reflecting age-related differences in intratu-
moral effector and regulatory T-cell populations. Clin Cancer Res

2018; 24:5347–56.
35 Samstein RM, Lee C-H, Shoushtari AN et al. Tumor mutational load

predicts survival after immunotherapy across multiple cancer types.
Nat Genet 2019; 51:202–6.

Supporting Information

Additional Supporting Information may be found in the online

version of this article at the publisher’s website:

Appendix S1 Supplementary materials and methods.

Table S1 Proportion of subtypes in The Cancer Genome Anal-

ysis dataset, average age of diagnosis by subtype, mean num-

ber of Signature 1 mutations and mean number of total

mutations in BRAF, NRAS, NF1 and triple-wildtype cutaneous

melanomas.

Table S2 Proportions of mutations of Signatures 1 and 7 in

the total mutation load broken down by subtype and sex.

Table S3 The yearly rate at which Signature 1 mutations accu-

mulate by sex and molecular subtype.

Table S4 The yearly rate at which Signature 1 mutations

increase relative to Signature 7 mutations by sex.

Appendix

Author contributions. A.V. conceived the project. M.L. led the

mathematical models and S.J.F. led the bioinformatics. A.V.,

M.L. and S.J.F. interpreted the data and wrote the manuscript.

T.B. contributed to data analysis.

© 2020 The Authors. British Journal of Dermatology
published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists

British Journal of Dermatology (2021) 184, pp328–337

Sex and age determine melanoma mutations, Lotz et al. 337

D
ow

nloaded from
 https://academ

ic.oup.com
/bjd/article/184/2/328/6599737 by guest on 20 N

ovem
ber 2024

http://biorxiv.org/content/early/2019/01/28/528968.abstract
http://biorxiv.org/content/early/2019/01/28/528968.abstract

